Question

Part A A three-dimensional potential well has potential Uo = 0 in the region 0 < x <L, 0<y<L, and 0 <z<2L and infinite potent

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Aus- 021८L O.<YLL, OcZcal The energy levels of the particle is given by Enginn h² nx Nz 8m Z (24) Enry, Ayiniz ny + + 2 2 nx

E ime² And the first excited state would collespond to (le 2, ny = M₂ = 1 ) or (x=1; M., 22 , 12 ) or (1) ny = 1, n₂ =2) enci

ماينرار 38m2 As 6,2 < Ery and E,,,2 E, 1,2 < Ezt hence the energy of the fisst excited excited state Also 3n² 6, 4 n² 9 Ime 1

Add a comment
Know the answer?
Add Answer to:
Part A A three-dimensional potential well has potential Uo = 0 in the region 0 <...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Q1) Consider 2.dimensional infinite "well" with the potential otherwise The stationary states are ny = (a)...

    Q1) Consider 2.dimensional infinite "well" with the potential otherwise The stationary states are ny = (a) sin ( x) sin (y,) The corresponding energies are n) , 123 Note that the ground state, ?11 is nondegenerate with the energy E00)-E1)-' r' Now introduce the perturbation, given by the shaded region in the figure ma AH,-{Vo, if 0<x otherwise y<a/2 (a) What is the energy of the 1.st excited state of the unperturbed system? What is its degree of degeneracy,v? (b)...

  • 4. (20 points) Infinite Wells in Three Dimensions a) Consider a three dimensional in- finite rect...

    4. (20 points) Infinite Wells in Three Dimensions a) Consider a three dimensional in- finite rectangular well for which L -L, Ly-2L, ald L2-3L. In terms of quantum numbers (e.g. nz, ny, and n.), M. L, and ћ. write down an expression for the energies of all quantum states. (b) Find the energies of the ground state and the first three lowest lying energies. As in part (b), for each energy level, give the quantum numbers n, ny, n and...

  • A particle is trapped in a one-dimensional potential energy well given by: 100 x < 0...

    A particle is trapped in a one-dimensional potential energy well given by: 100 x < 0 0 < x <L U(x) = L < x < 2L (20. x > 2L Consider the case when U, < E < 20., where E is the particle energy. a. Write down the solutions to the time-independent Schrödinger equation for the wavefunction in the four regions using appropriate coefficients. Define any parameters used in terms of the particles mass m, E, U., and...

  • Find parts a and b. Consider the three-dimensional cubic well V = {(0 if 0<x<a, 0<y<a,...

    Find parts a and b. Consider the three-dimensional cubic well V = {(0 if 0<x<a, 0<y<a, 0<z<a), (infinity otherwise). The stationary states are psi^(0) (x, Y, z) = (2/a)^(3/2)sin(npix/a)sin(npiy/a) sin(npiz/a), where nx, ny , and nz are integers. The corresponding allowed energies are E^0 = (((pi^2)(hbar^2))/2m(a^2))(nx^2+ny^2+nz^2). Now let us introduce perturbation V={(V0 if 0<x<(a/2), 0<y<(a/2)), (0 otherwise) a) Find the first-order correction to the ground state energy. b) Find the first-order correction to the first excited state. 1. Consider the...

  • hodernl Pllysics 2 due Thursday, April 5 Consider a particle in a 3 dimensional infinite square...

    hodernl Pllysics 2 due Thursday, April 5 Consider a particle in a 3 dimensional infinite square wel Vo(x, y, z) ={0 0<x<a & 0 otherwise 1. What is the energy of the ground state? What is the energy of the (degenerate) 1st excited state? What is its degeneracy?

  • Consider a particle in a 1-dimensional ininite square well potential {0, V(z)=Í oo, (-a < z...

    Consider a particle in a 1-dimensional ininite square well potential {0, V(z)=Í oo, (-a < z <a) elsewhere The particle is initially localized in the right side of the well (O S a) Calculate the probability that at later times, an energy measurement will yield the energy of the first excited state of this system

  • The one-dimensional infinite potential well can be generalized to three dimensions.

    (25 marks) The one-dimensional infinite potential well can be generalized to three dimensions. The allowed energies for a particle of mass \(m\) in a cubic box of side \(L\) are given by$$ E_{n_{p} n_{r, n_{i}}}=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) \quad\left(n_{x}=1,2, \ldots ; n_{y}=1,2, \ldots ; n_{z}=1,2, \ldots\right) $$(a) If we put four electrons inside the box, what is the ground-state energy of the system? Here the ground-state energy is defined to be the minimum energy of the system of electrons. You...

  • DApdr Q2. An electron is trapped in an one dimensional infinite potential well of length L...

    DApdr Q2. An electron is trapped in an one dimensional infinite potential well of length L Calculate the Probability of finding the electron somewhere in the region 0 <xLI4. The ground state wave function of the electron is given as ㄫㄨ (r)sin (5 Marks) O lype hene to search

  • (15 points) Encounter with a semi-infinite potential "well" In this problem we will investigate one situation involving a a semi-infinite one-dimensional po- tential well (Figure 1) U=0 regio...

    (15 points) Encounter with a semi-infinite potential "well" In this problem we will investigate one situation involving a a semi-infinite one-dimensional po- tential well (Figure 1) U=0 region 1 region 2 region 3 Figure 1: Semi-infinite potential for Problem 3 This potential is piecewise defined as follows where Uo is some positive value of energy. The three intervals in x have been labeled region 1,2 and 3 in Figure 1 Consider a particle of mass m f 0 moving in...

  • An electron in a one-dimensional infinite potential well of length L has ground-state energy E1. The...

    An electron in a one-dimensional infinite potential well of length L has ground-state energy E1. The length is changed to L' so that the new ground-state energy is E1' = 0.234E1. What is the ratio L'/L?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT