Question

A student sits on a freely rotating stool holding two dumbbells, each of mass 3.05 kg (see figure below). When his arms are e

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Here moment of Inertia of students and stool I = 2.68 kgam?). - Moment of Inertia of dumbell mi ehitial condition when they asimellarly el final moment of inentia when student pills his is hands mward hart potion or a moment of inertia of student andAngular i momentum initial = Angular momentum final I wi = If .wf be t h e low, dis x 017sta 3.2x will then I wg = 1.963 ra= x 3.196% (2 196372 a 6.16 J final kinetic energy a 6.165 Hence

Add a comment
Know the answer?
Add Answer to:
A student sits on a freely rotating stool holding two dumbbells, each of mass 3.05 kg...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A student sits on a freely rotating stool holding two dumbbells, each of mass 3.08 kg...

    A student sits on a freely rotating stool holding two dumbbells, each of mass 3.08 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 0.96 m from the axis of rotation and the student rotates with an angular speed of 0.755 rad/s. The moment of inertia of the student plus stool is 2.53 kg · m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.304 m...

  • A student sits on a freely rotating stool holding two dumbbells, each of mass 2.99 kg...

    A student sits on a freely rotating stool holding two dumbbells, each of mass 2.99 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 1.09 m from the axis of rotation and the student rotates with an angular speed of 0.752 rad/s. The moment of inertia of the student plus stool is 2.80 kg . m and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.293 m...

  • A student sits on a freely rotating stool holding two dumbbells, each of mass 3.04 kg...

    A student sits on a freely rotating stool holding two dumbbells, each of mass 3.04 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 1.02 m from the axis of rotation and the student rotates with an angular speed of 0.743 rad/s. The moment of inertia of the student plus stool is 2.58 kg .m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.294 m from...

  • A student sits on a freely rotating stool holding two dumbbells, each of mass 3.04 kg...

    A student sits on a freely rotating stool holding two dumbbells, each of mass 3.04 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 1.08 m from the axis of rotation and the student rotates with an angular speed of 0.755 rad/s. The moment of inertia of the student plus stool is 2.59 kg · m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.306 m...

  • A student sits on a freely rotating stool holding two dumbbells, each of mass 2.96 kg...

    A student sits on a freely rotating stool holding two dumbbells, each of mass 2.96 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 0.91 m from the axis of rotation and the student rotates with an angular speed of 0.741 rad/s. The moment of inertia of the student plus stool is 2.67 kg. m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.304 m from...

  • A student sits on a freely rotating stool holding two dumbbells, each of mass 2.93 kg...

    A student sits on a freely rotating stool holding two dumbbells, each of mass 2.93 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 0.97 m from the axis of rotation and the student rotates with an angular speed of rad/s. The moment of inertia of the student plus stool is 2.75 kg m^2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.291 m from the...

  • A student sits on a freely rotating stool holding two dumbbells, each of mass 2.98 kg...

    A student sits on a freely rotating stool holding two dumbbells, each of mass 2.98 kg . When his arms are extended horizontally , the dumbbells are 0.96 m from the axis of rotation and the student rotates with an angular speed of 0.747 rad/s. The moment of inertia of the student plus stool is 2.62 kg · m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.305 m from the rotation...

  • A student sits on a freely rotating stool holding two dumbbells, each of mass 2.93 kg...

    A student sits on a freely rotating stool holding two dumbbells, each of mass 2.93 kg (see figure below). When his arms are extended horizontally (figure a), the dumbbells are 0.95 m from the axis of rotation and the student rotates with an angular speed of 0.744 rad/s. The moment of inertia of the student plus stool is 2.62 kg middot m^2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.308 m...

  • 3. A student sits on a freely rotating stool holding two dumbbells, each of mass 2.92...

    3. A student sits on a freely rotating stool holding two dumbbells, each of mass 2.92 kg. When his arms are extended horizontally, the dumbbells are 0.95 m from the axis of rotation and the student rotates with an angular speed of 0.754 rad/s. The moment of inertia of the student plus stool is 2.69 kg · m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.305 m from the rotation axis....

  • TP Setumal Universit... NMCAT CARS Practic Paste A student sits on a freely rotating stool holding...

    TP Setumal Universit... NMCAT CARS Practic Paste A student sits on a freely rotating stool holding two dumbbells, each of mass 3.05 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 0.91 m from the axis of rotation and the student rotates with an angular speed of 0.740 rad/s. The moment of inertia of the student plus stool is 2.73 kg - m' and is assumed to be constant. The student pulls the dumbbells...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT