A student sits on a freely rotating stool holding two dumbbells, each of mass 3.08 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 0.96 m from the axis of rotation and the student rotates with an angular speed of 0.755 rad/s. The moment of inertia of the student plus stool is 2.53 kg · m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.304 m from the rotation axis (Figure b).
(a) Find the new angular speed of the student.
(b) Find the kinetic energy of the rotating system before and after
he pulls the dumbbells inward.
Kbefore | = |
Kafter | = |
Alright Dude, If that worked for you... don't forget to give THUMBS
UP.(that will work for me!)
Please Vote...
If I missed something feel free to leave a comment.
atleast before giving down vote.
and, Thanks for using homeworklib- Smarter way to study.
A student sits on a freely rotating stool holding two dumbbells, each of mass 3.08 kg...
A student sits on a freely rotating stool holding two dumbbells, each of mass 3.05 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 0.96 m from the axis of rotation and the student rotates with an angular speed of 0.757 rad/s. The moment of inertia of the student plus stool is 2.68 kg m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.291 m from...
A student sits on a freely rotating stool holding two dumbbells, each of mass 3.04 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 1.08 m from the axis of rotation and the student rotates with an angular speed of 0.755 rad/s. The moment of inertia of the student plus stool is 2.59 kg · m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.306 m...
A student sits on a freely rotating stool holding two dumbbells, each of mass 2.96 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 0.91 m from the axis of rotation and the student rotates with an angular speed of 0.741 rad/s. The moment of inertia of the student plus stool is 2.67 kg. m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.304 m from...
A student sits on a freely rotating stool holding two dumbbells, each of mass 2.99 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 1.09 m from the axis of rotation and the student rotates with an angular speed of 0.752 rad/s. The moment of inertia of the student plus stool is 2.80 kg . m and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.293 m...
A student sits on a freely rotating stool holding two dumbbells, each of mass 3.04 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 1.02 m from the axis of rotation and the student rotates with an angular speed of 0.743 rad/s. The moment of inertia of the student plus stool is 2.58 kg .m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.294 m from...
A student sits on a freely rotating stool holding two dumbbells, each of mass 2.98 kg . When his arms are extended horizontally , the dumbbells are 0.96 m from the axis of rotation and the student rotates with an angular speed of 0.747 rad/s. The moment of inertia of the student plus stool is 2.62 kg · m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.305 m from the rotation...
A student sits on a freely rotating stool holding two dumbbells, each of mass 2.93 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 0.97 m from the axis of rotation and the student rotates with an angular speed of rad/s. The moment of inertia of the student plus stool is 2.75 kg m^2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.291 m from the...
A student sits on a freely rotating stool holding two weights, each of mass 3.08 kg. When his arms are extended horizontally, the weights are 0.91 m from the axis of rotation and he rotates with an angular speed of 0.755 rad/s. The moment of inertia of the student plus stool is 3.08 kg·m2 and is assumed to be constant. The student pulls the weights inward horizontally to a position 0.294 m from the rotation axis. (a) Find the new...
A student sits on a freely rotating stool holding two dumbbells, each of mass 2.93 kg (see figure below). When his arms are extended horizontally (figure a), the dumbbells are 0.95 m from the axis of rotation and the student rotates with an angular speed of 0.744 rad/s. The moment of inertia of the student plus stool is 2.62 kg middot m^2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.308 m...
3. A student sits on a freely rotating stool holding two dumbbells, each of mass 2.92 kg. When his arms are extended horizontally, the dumbbells are 0.95 m from the axis of rotation and the student rotates with an angular speed of 0.754 rad/s. The moment of inertia of the student plus stool is 2.69 kg · m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.305 m from the rotation axis....