Question
singal and system
QUESTION 5 [20 marks] Given transfer function of a networks H(s) transfer function at w = 1000 rad/s. $10+ 52 +10005+7x106 -
0 0
Add a comment Improve this question Transcribed image text
Answer #1

1HGW), 2010g 1000 = 20109 (t0,000) =-2008 1 Pole gives = -20 d Blder 1 zero give - trodelder ماد 10,000 a - 20 J Jodolde hou

Add a comment
Know the answer?
Add Answer to:
singal and system QUESTION 5 [20 marks] Given transfer function of a networks H(s) transfer function...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Please answer all parts Problem #5 - (20%) A circuit has the transfer function: H(S) =...

    Please answer all parts Problem #5 - (20%) A circuit has the transfer function: H(S) = S. (s + 5623 (s + 31.62) · (s + 17778) (a) Use asymptotic analysys to compute (HS) at infinite frequency by inspection of the circuit (not by computation). Express your answer in dB. (4%) (b) Determine the phase of the transfer function at infinite frequency. (4%) (c) Rewrite the transfer function in the form used for creating a Bode plot. (4%) Problem #5...

  • 1. (20 points). A transfer function has the following zeros and poles: zero at s=-105 and s= poles at s-100 and s--1000. The magnitude of the transfer function at ω= 105 rad/s is equal 100. Find the...

    1. (20 points). A transfer function has the following zeros and poles: zero at s=-105 and s= poles at s-100 and s--1000. The magnitude of the transfer function at ω= 105 rad/s is equal 100. Find the transfer function T(s) and sketch Bode plots for the magnitude and phase, ˇ 1. (20 points). A transfer function has the following zeros and poles: zero at s=-105 and s= poles at s-100 and s--1000. The magnitude of the transfer function at ω=...

  • 105- Problem #4 - Given the transfer function T(s)- ***(1+%o1+%0011+%00) A) Find the Poles and Zeros....

    105- Problem #4 - Given the transfer function T(s)- ***(1+%o1+%0011+%00) A) Find the Poles and Zeros. B) Sketch the Bode plots for the magnitude and phase of the function. C) From the plot estimate the gain and phase at 1000 rad/s and compare to actual calculated values.

  • 1. A unity feedback system has open-loop transfer function given by an 100 G(s)s2)(s +4) a....

    1. A unity feedback system has open-loop transfer function given by an 100 G(s)s2)(s +4) a. Use analytical techniques (i.e. without using any plots) to estimate the closed-loop: i. Resonant frequency, w (8 marks) ii. Resonance peak, Mp (in decibels) (2 marks) i. Phase at w = 3rad/s (2 marks) b. Obtain a table for the response of the open-loop transfer function for a set S of frequency values, where S {1.5,3,5,7, 10, 15, 20} rad/s (8 marks) Hence draw...

  • Let a transfer function H be 1000s + 10) 100+1000 Use H to respond to the following questions and...

    System dynamics course. Let a transfer function H be 1000s + 10) 100+1000 Use H to respond to the following questions and imperatives a. Write H as a product of standard-form transfer functions Find the frequency response function H(jaw) without simplifying c. Use the axes below to sketch the Bode plot of H. 20 -20 10-1 10° 101 102 103 10 w (rad/s) 90 45 45 -90 -135 -180 10-T 100 101 102 103 101 w (rad/s) Let a transfer...

  • For the given transfer function: Ho-2where s 5 (s s (s +10) where s =j w...

    For the given transfer function: Ho-2where s 5 (s s (s +10) where s =j w Sketch the approximate Bode plots (amplitude and phase). Label all the amplitude values in db, phase values in degrees, the slopes in db/dec, and the corner frequencies in rad/sec.. a. b. If the gain of the transfer function given above, H(s), increased by a factor of 10 (from 5 to 50), what will happen to the approximate Bode plots (amplitude and phase) that you...

  • 1. A unity feedback system has open-loop transfer function given by an 100 G(s)s2)(s +4) a....

    1. A unity feedback system has open-loop transfer function given by an 100 G(s)s2)(s +4) a. Use analytical techniques (i.e. without using any plots) to estimate the closed-loop: i. Resonant frequency, w (8 marks) ii. Resonance peak, Mp (in decibels) (2 marks) i. Phase at w = 3rad/s (2 marks) b. Obtain a table for the response of the open-loop transfer function for a set S of frequency values, where S {1.5,3,5,7, 10, 15, 20} rad/s (8 marks) Hence draw...

  • I need help with this  Bode Plots assignment 2. (5 points) Follow the steps (a-c) described below for the following tra...

    I need help with this  Bode Plots assignment 2. (5 points) Follow the steps (a-c) described below for the following transfer function. Do the steps in order! 1+ 10 1+ 10 a. On a 'blank Bode plot' grid, plot the Bode plot straight line hand sketch approximation for magnitude for the frequency range from 1000 to ω.*1000. Be sure, though, that the corner frequency aligns with an appropriate vertical line on the grid. b. On graph paper, directly below the...

  • I need help with this  Bode Plots assignment (5 points) Follow the steps (a-c) described below for the following transf...

    I need help with this  Bode Plots assignment (5 points) Follow the steps (a-c) described below for the following transfer function. Do the steps in order! 5. H50 H(s) 2000 a. On a 'blank Bode plot' grid, plot the Bode plot straight line hand sketch approximation for magnitude for the frequency range from 1000 to ω.*1000. Be sure, though, that the corner frequency aligns with an appropriate vertical line on the grid. b. On graph paper, directly below the magnitude...

  • For the following closed-loop transfer functions, sketch the bode plots (magnitude and phase), id...

    For the following closed-loop transfer functions, sketch the bode plots (magnitude and phase), iden- tifying the zero gain, the slopes (in Decibels) and the high-frequency cutt-off rate. Then verify with Matlab (6) wn = 1, 〈 0.0.1, and 0.707. (8) Assuming the system of Problem 6 above, and an input of r(t) = 30sin(1000 t), use your bode plot to obtain the steady-state response For the following closed-loop transfer functions, sketch the bode plots (magnitude and phase), iden- tifying the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT