#2. A 3-phase, 60-Hz transmission line is 140 miles long and has r :0.30 Ohms/mile, x...
PROBLEM: A 230-kV, 50 Hz, three-phase transmission line is 120 km long. The line has a per phase series impedance of z-0.05 +j0.45 Ω per km, and a per phase shunt admittance of y 3.4x10-6 Siemens per km. The line delivers (at the receiving end) 200 MVA, 0.8 lagging power factor at 220 kV. Now consider two cases: A- Assume that shunt parameters of the transmission line are ignored (i.e. even if this is a medium length transmission line, under...
A 230-kV, three-phase transmission line has a per phase series impedance of z = 0.05j0.45 2 per km and a per phase shunt admittance ofy = j3.4 x 10-6 siemens per km. The line is 80 km long. Using the nominal r model, determine (a) The transmission line ABCD constants. Find the sending end voltage and current, voltage regulation, the sending end power and the transmission efficiency when the line delivers (b) 200 MVA, 0.8 lagging power factor at 220...
#1, A 3-phase, 60-Hz transmission line is 50 km long and has r -o20 Ohms/km and x-0.50 Ohms/km. The load at the receiving end of the line is 2.5 Mw at a power factor of 0.9 leading. (i)Compute the impedance of the line, Zline * at the lad tole, the lad wi e . (ii)Find the sending end current, I, as 33nv lhe to tine Van-eerene (ii) What is the sending end voltage, V,? (iv)What is the real power, P...
A 3-phase, 50 Hz, long 300 Km transmission line delivers 60 MVA at 124 kV and 0-8 p.f. lagging. The total resistance 25.3 ohm and total reactance is 66.5 ohm and the admittance due to capacitance is 0.442*10-3 mho. Determine: (i) (ii) (iii) A,B, C and D constants of long T.L Sending end voltage, current and power factor Transmission efficiency, Voltage regulation
Question: A three-phase, 60-Hz, completely transposed transmission line has a length of 100-km and has a series impedance per phase of (0.25+j0.85) ohms/mile and shunt admittance of 5.0*10^-5 Siemens/mile. The transmission line delivers 150 MW at 0.85 lagging power factor to a load connnected to its receiving end. The line-to-line voltage at the receiving end is 138-kV. Note: The Medium Length Line method should be used since it is used for distances between 50 miles to 150 miles. Determine the...
Problem 2: A 345 kV, 60 Hz, three-phase characteristic parameters of the transmission line are: transmission line is 130 km long. The r= 0.036 ?/km L = 0.8 x 10-3 H/km C = 0.0112 x 10-6 F/km The receiving end load is 270 MVA with 0.8 PF lagging at 325 kV. (k) What is the total series impedance of this transmission line? (5 points) () What is the total shunt admittance of this transmission line? (5 points) (m) Calculate the...
A 220-kV, 150 MVA, 60-Hz, three-phase transmission line is 140 km long with the characteristic parameters of r = 0.09 Ohm/km, x = 0.88 Ohm/km, y = 4.1 * 10^-6 s/km. Calculate the ABCD constants of this transmission line. What is the sending end voltage if the line is supplying rated voltage and apparent power at 0.85 PF lagging? What is the voltage regulation of the transmission line for the conditions in question 11. What is the efficiency of the...
A single circuit three phase transmission line which is
110miles long and made of Ostrich
Problem 2: single circuit, three phase transmission line which is 110 miles long and made of Ostrich conduction ivers 70 MVA of power to a load with power factor of 0.85 lagging. If the V Lu is 169 KV and the spacing between each phase of conductors is 12.2 ft, determine: a) The line constants (ABCD) The sending end voltage, current, real and reactive power...
A 220-kV, 150 MVA, 60-Hz, three-phase transmission line is 140 km long with the characteristic parameters of r = 0.09 ohm/km, x = 0.88 ohm/km, y = 4.1 * 10^-6 S/km. 10. Calculate the ABCD constants of this transmission line. 11. What is the sending end voltage if the line is supplying rated voltage and apparent power at 0.85 PF lagging? 12. What is the voltage regulation of the transmission line for the conditions in question 11. 13. What is...
A 132 kV, 55 MVA, 60 Hz, three-phase, power transmission line is 100 km (62. 1 mi) long, and has the following characteristics: r = 0.25 Ω/km x = 0.5 Ω/km y = j*S/km What is the per phase total series impedance and shunt admittance of the line? Should the line be modeled as a short, medium or long line? Calculate the ABCD constants of the line. Calculate the sending end voltage and current if the line is supplying rated...