Question

# Consider the closed loop system a) Design a PD controller (that is, calculate K1 and K2) such that the system is stable and the steady-state error for the input r (t) = unity ramp let less than or equal to 0.02. b) Select a value from K1 and K2 and build

Consider the closed loop system

a) Design a PD controller (that is, calculate K1 and K2) such that the system is

stable and the steady-state error for the input r (t) = unity ramp let

less than or equal to 0.02.

b) Select a value from K1 and K2 and build the model in Simulink or solution

analytical to obtain the response of the system to the magnitude ramp

r (t) = 2t.

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

All students who have requested the answer will be notified once they are available.

#### Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
• ### PD & PID controller design Consider a unity feedback system with open loop transfer function, G(s)...

PD & PID controller design Consider a unity feedback system with open loop transfer function, G(s) = 20/s(s+2)(8+4). Design a PD controller so that the closed loop has a damping ratio of 0.8 and natural frequency of oscillation as 2 rad/sec. b) 100 Consider a unity feedback system with open loop transfer function, aus. Design a PID controller, so that the phase margin of (S-1) (s + 2) (s+10) the system is 45° at a frequency of 4 rad/scc and...

• ### please solve as matlab code. The system in Figure 3 comprises a motor and a contoller. The performance requirements entail a steady state error for ramp input r(t) Ct, smaller than 0.01C. Here, C...

please solve as matlab code. The system in Figure 3 comprises a motor and a contoller. The performance requirements entail a steady state error for ramp input r(t) Ct, smaller than 0.01C. Here, C is a constant. The overshoot for step input must be such that P.0. 5% and the settling time with a 2% error should be T, 2 seconds (a) Based on rlocus function, write a piece of MATLAB code which establishes the controller. (b) Create the graph...

• ### PROBLEM 4 A unity feedback closed loop control system is displayed in Figure 4 (a) Assume that the controller is given by G (s)-2. Based on the lsim function of MATLAB, calculate and obtain the g...

PROBLEM 4 A unity feedback closed loop control system is displayed in Figure 4 (a) Assume that the controller is given by G (s)-2. Based on the lsim function of MATLAB, calculate and obtain the graph of the response for 0,(1)-a. Here a ; 0.5%, Find the height error after 10 seconds, (b) In order to reduce the steady-state error, substitute G. (s) with the following controller: K2 This is a Proportional-Integral (PI) controller. Repeat part (a) in the presence...

• ### Write as MATLAB code with comments thank you. The system in Figure 3 comprises a motor and a contoller. The performance requirements entail a steady state error for ramp input r(t) Ct, smaller than 0...

Write as MATLAB code with comments thank you. The system in Figure 3 comprises a motor and a contoller. The performance requirements entail a steady state error for ramp input r(t) Ct, smaller than 0.01C. Here, C is a constant. The overshoot for step input must be such that P.0.S 5% and the settling time with a 2% error should be T. 2 seconds. (a) Based on rlocus function, write a piece of MATLAB code which establishes the controller. (b)...

• ### A unity feedback closed loop control system is displayed in Figure 4. (a) Assume that the control...

Please solve as a MATLAB code. A unity feedback closed loop control system is displayed in Figure 4. (a) Assume that the controller is given by G (s) 2. Based on the lsim function of MATLAB, calculate and obtain the graph of the response for (t) at. Here a 0.5°/s. Find the height error after 10 seconds, (b) In order to reduce the steady-state error, substitute G (s) with the following controller This is a Proportional-Integral (PI) controller. Repeat part...

• ### Problem 1: Steady-state error analvsis (a) A block diagram of a feedback control system is given ...

The Class Name is: MAE 318 System Dynamics and Control I Problem 1: Steady-state error analvsis (a) A block diagram of a feedback control system is given below. Assuming that the tunable constant Khas a value that makes this closed-loop system stable, find the steady-state error of the closed-loop system for (a a step reference input with amplitude R, r(t)- R u(t) (ii) a ramp reference input with slope R, r(t) = Rt-us(t) R(s) Y(s) (s+2)(s +5) (b) A block...

• ### A unity feedback system is shown in Fig. 1. The closed-loop transfer function ?(?) of this...

A unity feedback system is shown in Fig. 1. The closed-loop transfer function ?(?) of this system is given as ?(?)=?1?4+2?3+(?2+1)?2+?2?+?1. a) (20%) Using Routh-Hurwitz criteria, find expression (in terms of ?1 and ?2) and range of value of ?1 and ?2 such that the above system is stable. b) (4%) It is desired to achieve steady-state error of less than 0.3 with a unit ramp input. Find an additional constrain in terms of ?1 and ?2 such that the...

• ### plz solve this problem [10] Consider the system shown below. Design the PD controller such that the closed loop syst...

plz solve this problem [10] Consider the system shown below. Design the PD controller such that the closed loop system satisfies the following specifications. a) The steady-state error with respect to a step disturbance W (s) is no more than 10 %. b) The third order system gives a dominant 2nd order response such that the third pole s=p satisfies p 10wn, where Zwn is the damping constant. |W(s) Y(s) 1 E(S)Kp+Kps R(s) s(s+10) [10] Consider the system shown below....

• ### blem 5 (2000): The closed-loop system is given below. Controller El(s) ) (5% o) Find the system transfer function and discuss the range of Ko to make the stem stable assuming Kp-5. ) (5 %) Find t...

blem 5 (2000): The closed-loop system is given below. Controller El(s) ) (5% o) Find the system transfer function and discuss the range of Ko to make the stem stable assuming Kp-5. ) (5 %) Find the percentage of overshoot and steady state error to the unit ramp input as function of your design parameter Kp assuming KD-4. :) (5%) Find the design parameters KD and Kp such that the damping ratio of the closed- pop system is 0.5 and...

• ### PROBLEMA: (25%) A closed-loop control system is shown below Ds) T(O) U(A) C(s) (a) Show that a proportional controller (C(s)-kp) will never make the closed-loop system stable. (8%) (Hint: you nee...

PROBLEMA: (25%) A closed-loop control system is shown below Ds) T(O) U(A) C(s) (a) Show that a proportional controller (C(s)-kp) will never make the closed-loop system stable. (8%) (Hint: you need to calculate the closed-loop pole locations and make discussion for the two possible cases.) (Medim) (b) When a PD controller is used (C(s)kp+ kps), calculate the steady state tracking error when both R(s) and D(s) are unit steps. (8%) (Easy) (e) Suppose R(s) is a unit step and D(s)...