21. A frictionless roller coaster car is released from rest on the track at a height...
A block of mass 10kg is released from rest and slides down a frictionless track of height h 5m above a table (see figure). At the bottom of the track, where the surface is horizontal, the block strikes and sticks to a light spring with spring constant k 10k the acceleration of gravity to be 9.81 The maximum distance d the spring is compressed is
A roller coaster car of mass 800 kg when released from rest at point A (height h above the ground) slides along the track and inside the loop of radius 16.0 m. The car never loses contact with the track. A) Draw below a free body diagram for the car the car at the top of the loop. B) If the normal force acting on the car at the top is 1500 N, what is the speed of the car...
A roller coaster car of mass 800 kg when released from rest at point A (height h above the ground) slides along the track and inside the loop of radius 16.0 m. The car never loses contact with the track. A) Draw below a free body diagram for the car the car at the top of the loop. B) If the normal force acting on the car at the top is 1500 N, what is the speed of the car...
A 500-g block is released from rest and slides down a frictionless track that begins 1.58 m above the horizontal, as shown in the figure below. At the bottom of the track, where the surface is horizontal, the block strikes and sticks to a light spring with a spring constant of 23.0 N/m. Find the maximum distance the spring is compressed 500 g
a 15kg block is released from rest on the smooth, horizontal surface and moves to the right. The spring has a spring constant k = 12N/m and is initially compressed 1.2 m, Find the intial elastic energy stored in the spring, the maximum force of the spring on the block and the maximum a speed of the block. beu
a mass of 200 kg travels down a frictionless roller coaster from a height of 50 m. When it reaches the level ground (height 0 m) it encounters an unstretched horizontal spring with spring constant 10,000 N/m. As the mass comes to a rest how far does it compress the spring?
A hockey puck oscillates on a frictionless, horizontal track while attached to a horizontal spring. The puck has mass 0.160 kg and the spring has force constant 8.00 N/m. The maximum speed of the puck during its oscillation is 0.350 m/s. What is the amplitude of the oscillation? What is the total mechanical energy of the oscillation? What is the potential energy of the puck when the displacement of the glider is 0.0300 m? What is the kinetic energy of...
A 0.19 kg mass is held at rest against a compressed spring with a spring constant of 103 N/m. When released, the mass leaves the spring with a speed of 6.28 m/s. Assuming that the spring force if wholly responsible for changing the motion of the mass, by what distance was the spring initially compressed from its equilibrium position?
f 57 kg starts from rest e at a height of 45 m. h shown in Figure 9. d peak. (4.5) A 58. A ball is attached to a vertical spring with a spring constant of 6.0 N/m. It is held at the equilibrium position of the spring and then released. It falls 0.40 m and then bounces back up again. Calculate the mass of the ball. (4.7) 59. A ball of mass 0.50 kg is attached to a horizontal...
A 1000 kg race car starts from rest and reaches a speed of 100 km/h in 20 s. What is the power delivered by the car’s engine? (2 points). A 1 kg mass is released from the top of a smooth slide of height 2m. At the bottom of the slide the mass slides on a horizontal surface and stops at a distance of 5 m. What is the coefficient of kinetic friction of the horizontal surface? (3.5 points). The...