Problem 5: A cantilever beam AB of length L supports a uniform load of intensity q...
Q2. A simply supported beam AB (Figure 2) supports a uniformly distributed load of q = 18kN/m and a concentrated load of P = 23kN at the centre. Consider length of the beam, L = 3m, Young's modulus, E = 200GPa and moment of inertial, I = 30 x 10 mm-. Assume the deflection of the beam can be expressed by elastic curve equations of the form: y(x) = Ax4 + Bx3 + Cx2 + Dx + E. 1) Sketch...
A Problem 5 A tapered cantilever beam AB of length L has square cross sections and supports a concentrated load P at the free end. The width and height of the beam vary linearly from h at the free end to 3h at the fixed end. What is the magnitude of the maximum bending stress?
1. The cantilever beam AB of length L shown in Fig.(a carries a uniformly distributed load of intensity wo, which includes the weight of the beam. Equation of the elastic curve is given by the following differential equation Af _irer where M is the bending moment of the beam. it is also given that of the beam and I modulus of Inertia. where E- Modulus of the elasticity v is the deflection of the beam. Compute the maximum displacement of...
Strength of Materials IV 9.2-5 The defiuction curve for a cantilever beam AB (see fgure) is given b 120LEI Describe the load acting on the beam. 2 .3-6 Calculate the maximum deflection dma of a uniformly loaded simple beam if the span length L 5 2.0 m, the intensity of the uniform load g 5 2.0 kN/m, and the maximum bending stress s 5 60 MPa. rn X The cross section of the beam is square, and the material is...
A cantilever beam AB with a circular cross section and length L = 750 mm supports a load P = 800 N acting at the free end (see figure). The beam is made of steel with an allowable bending stress of l20 MPa. Determine the required diameter d_min (figure part a) of the beam, considering the effect of the beam's own weight. Repeat part (a) if the beam is hollow with wall thickness t = d/8 (figure part b); compare...
Problem 2: Cantilever beam In class we derived the spring constant of a beam of length L and constant bending stiffness El clamped at x=0 and subject to a vertical force Fat x= L. Let's study a few different variations of that problem. Let's replace the vertical force F by a counter clockwise bending moement Mo applied at x = L. Recom- pute the equivalent spring constant. Note that in the class we computed spring constant with force and displacement....
Problem 1 A cantilever beam of length L is clamped at its left end (x = 0) and is free at its right end (x = L). Along with the fourth-order differential equation EIy(4) = w(x), it satisfies the given boundary conditions y(0) = y′(0) = 0,y′′(L) = y′′′(L) = 0. a) If the load w(x) = w0 a constant, is distributed uniformly, determine the deflection y(x). b) Graph the deflection curve when w0 = 24EI and L = 1....
Problem: The stepped cantilever beam AC is composed of two equal length, L, steel rods AB and BC having diameters 2d and d respectively. It caries a load P at its free end C. Determine: (a) Reaction force and moment at point A; (b) Moment distribution (M(x) along the beam; (c) Equations and boundary conditions needed to calculate shape of the beam yx); dBCExtra pts (due on Thursday 05/03/18): (d) Deflections and slops at points B and C A
A simple beam AB of span length L 6.7 m (Fig. 5-14a) supports a uniform load of intensity q 22 kN/m and a concentrated load P 50 kN. The uni- form load includes an allowance for the weight of the beam. The concen trated load acts at a point 2.5 m from the left-hand end of the beam. The beam is constructed of glued laminated wood and has a cross section of width b 220 mm and a height h...
engineering mechain Problem-1: (20 points) A cantilever beam is supported by a distributed load, concentrated load and moment as shown in the figure. Use wo= 1 kN/m and L=12 m. Determine the following: a. Write down the equation of shear force and bending moment for the portion of the beam from A to B. b. Draw the shear force diagram for the entire beam c. Draw the bending moment diagram for the entire beam d. What is the shear force...