Question

The following bivariate data set contains an outlier. x y 48.9 43.4 33.2 483.2 63.3 -182.8...

The following bivariate data set contains an outlier.

x y
48.9 43.4
33.2 483.2
63.3 -182.8
44.5 -22.7
40.6 -84.6
71.1 75.3
45.9 -126.9
16.1 343.7
44.3 77.1
53 -294
30.5 -94.2
53.9 2.1
6.9 491.9
65.5 -13
263.7 2849.6



What is the correlation coefficient with the outlier?
rw =

What is the correlation coefficient without the outlier?
rwo =

Would inclusion of the outlier change the evidence for or against a significant linear correlation?

  • Yes. Including the outlier changes the evidence regarding a linear correlation.
  • No. Including the outlier does not change the evidence regarding a linear correlation.
0 0
Add a comment Improve this question
Answer #1

correlation coefficient with the outlier-

X Y (x-x̅)² (y-ȳ)² (x-x̅)(y-ȳ)
48.9 43.4 97.22 37303.06 1904.36
33.2 483.2 653.31 60841.16 -6304.63
63.3 -182.8 20.61 175846.04 -1903.80
44.5 -22.7 203.35 67205.38 3696.76
40.6 -84.6 329.79 103130.90 5831.90
71.1 75.3 152.28 25998.34 -1989.70
45.9 -126.9 165.38 132088.63 4673.84
16.1 343.7 1819.88 11483.27 -4571.45
44.3 77.1 209.09 25421.11 2305.50
53 -294 33.18 281472.69 3055.91
30.5 -94.2 798.63 109388.95 9346.71
53.9 2.1 23.62 54962.11 1139.38
6.9 491.9 2689.46 65208.73 -13242.97
65.5 -13 45.43 62270.21 -1681.90
263.7 2849.6 42000.40 6828082.56 535520.52
ΣX ΣY Σ(x-x̅)² Σ(y-ȳ)² Σ(x-x̅)(y-ȳ)
total sum 881.4 3548.1 49241.62 8040703.14 537780.4
mean 58.760 236.540 SSxx SSyy SSxy

correlation coefficient , r = Sxy/√(Sx.Sy)   =537780.4/√(49241.62*8040703.14) = 0.8547

-------------------------------------

correlation coefficient without the outlier-

X Y (x-x̅)² (y-ȳ)² (x-x̅)(y-ȳ)
48.9 43.4 22.83 42.16 -31.03
33.2 483.2 119.28 187755.08 -4732.33
63.3 -182.8 367.82 54145.97 -4462.72
44.5 -22.7 0.14 5269.72 -27.48
40.6 -84.6 12.40 18088.33 473.61
71.1 75.3 727.84 645.52 685.45
45.9 -126.9 3.16 31255.71 -314.44
16.1 343.7 785.20 86322.64 -8232.90
44.3 77.1 0.03 740.23 4.86
53 -294 78.83 118262.30 -3053.28
30.5 -94.2 185.54 20762.75 1962.75
53.9 2.1 95.62 2284.16 -467.35
6.9 491.9 1385.43 195370.31 -16452.14
65.5 -13 457.04 3955.51 -1344.56
ΣX ΣY Σ(x-x̅)² Σ(y-ȳ)² Σ(x-x̅)(y-ȳ)
total sum 617.7 698.5 4241.184 724900.39 -35991.5
mean 44.121 49.893 SSxx SSyy SSxy

correlation coefficient , r = Sxy/√(Sx.Sy)   = -35991.5/√(4241.184*724900.39) =    -0.6491

------------------------------

Yes. Including the outlier changes the evidence regarding a linear correlation

Add a comment
Know the answer?
Add Answer to:
The following bivariate data set contains an outlier. x y 48.9 43.4 33.2 483.2 63.3 -182.8...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The following bivariate data set contains an outlier. х 33.1 48.1 0.8 17.5 36.3 46.7 11.2...

    The following bivariate data set contains an outlier. х 33.1 48.1 0.8 17.5 36.3 46.7 11.2 13.4 27.4 37.3 15.7 31.5 6.1 36.3 190 у 138.2 477.3 -211 - 189.8 250.2 -237.7 - 144.5 395.4 - 168.2 -276 -75.4 244.5 -95.6 -249 2737.2 What is the correlation coefficient with the outlier? Tw= What is the correlation coefficient without the outlier? Would inclusion of the outlier change the evidence for or against a significant linear correlation? Yes. Including the outlier changes...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT