Question

10.Methanol (CH3OH) is produced commercially by the catalyzed reaction of carbon monoxide and hydrogen: CO(g)+2H2(g)⇌CH3OH(g) ....

10.Methanol (CH3OH) is produced commercially by the catalyzed reaction of carbon monoxide and hydrogen:
CO(g)+2H2(g)⇌CH3OH(g) .
An equilibrium mixture in a 1.50 L vessel is found to contain 0.0675 mol CH3OH , 0.160 mol CO , and 0.301 mol H2 at 500 K .

Calculate Kc at this temperature.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

please give thumbs up to my answer as I am in very need of that

Add a comment
Know the answer?
Add Answer to:
10.Methanol (CH3OH) is produced commercially by the catalyzed reaction of carbon monoxide and hydrogen: CO(g)+2H2(g)⇌CH3OH(g) ....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Carbon monoxide gas reacts with hydrogen gas to form methanol via the following reaction: CO(g)+2H2(g)→CH3OH(g) A...

    Carbon monoxide gas reacts with hydrogen gas to form methanol via the following reaction: CO(g)+2H2(g)→CH3OH(g) A 1.70 L reaction vessel, initially at 305 K, contains carbon monoxide gas at a partial pressure of 232 mmHg and hydrogen gas at a partial pressure of 355 mmHg . Identify the limiting reactant and determine the theoretical yield of methanol in grams

  • Carbon monoxide gas reacts with hydrogen gas to form methanol via the following reaction: CO(g)+2H2(g)→CH3OH(g) A...

    Carbon monoxide gas reacts with hydrogen gas to form methanol via the following reaction: CO(g)+2H2(g)→CH3OH(g) A 1.15 L reaction vessel, initially at 305 K, contains carbon monoxide gas at a partial pressure of 232 mmHg and hydrogen gas at a partial pressure of 375 mmHg . Identify the limiting reactant and determine the theoretical yield of methanol in grams.

  • A mixture of carbon monoxide, hydrogen, and methanol, CH, OH, is at equilibrium according to the...

    A mixture of carbon monoxide, hydrogen, and methanol, CH, OH, is at equilibrium according to the equation CO(g) + 2H2 (9) = CH3OH(9) At 270°C, the mixture is 5.0 x 10-2 M CO.0.760 M H2, and 9.8 x 10-3 M CH3OH What is Ke for this reaction at 270°C? Ke= When 0.125 mol of NO and 18.50 g of bromine are placed in a 1.00-L reaction vessel and sealed, the mixture is heated to 350 K and the following equilibrium...

  • 4.66. Methanol is formed from carbon monoxide and hydrogen in the gas-phase reaction CO 2H2 CH3OH...

    4.66. Methanol is formed from carbon monoxide and hydrogen in the gas-phase reaction CO 2H2 CH3OH (A) (B) (C) The mole fractions of the reactive species at equilibrium satisfy the relation 1 = Ke(T where P is the total pressure (atm), Ke the reaction equilibrium constant (atm2), and T the temperature (K). The equilibrium constant Ke equals 10.5 at 373 K, and 2.316 x 10-4 at 573 K. A semilog plot of Ke (logarithmic scale) versus 1/T (rectangular scale) is...

  • The synthesis of methanol from carbon monoxide and hydrogen gas is described by the following chemical...

    The synthesis of methanol from carbon monoxide and hydrogen gas is described by the following chemical equation: CO(g)+2H2(g)⇌CH3OH(g)CO(g)+2H2(g)⇌CH3OH(g) The equilibrium constant for this reaction at 25 ∘C∘C is Kc=2.3×104Kc=2.3×104. In this tutorial, you will use the equilibrium-constant expression to find the concentration of methanol at equilibrium, given the concentration of the reactants. 1. a. Suppose that the molar concentrations for COCO and H2H2 at equilibrium are [CO][CO] = 0.04 MM and [H2][H2] = 0.04 MM. Use the formula you found...

  • 52. A high temperatures carbon monoxide and hydrogen react to produce methanol, CO(g) + 2H2(g) CHOH(g)...

    52. A high temperatures carbon monoxide and hydrogen react to produce methanol, CO(g) + 2H2(g) CHOH(g) Δ}":-129 klinol Suppose that in an industrial reactor, the reaction is at equilibrium. For each of the following changes made to the equilibrium system a. The partial pressure of hydrogen is lowered, how will the partial pressures of b. Methanol is rapidly removed from the reactor, how will the pressures of the c· The temperature remains constant while the volume decreases, compressing d. The...

  • 1.Carbon monoxide gas reacts with hydrogen gas to form methanol via the following reaction: CO(g)+2H2(g)→CH3OH(g)CO(g)+2H2(g)→CH3OH(g) A...

    1.Carbon monoxide gas reacts with hydrogen gas to form methanol via the following reaction: CO(g)+2H2(g)→CH3OH(g)CO(g)+2H2(g)→CH3OH(g) A 1.65 LL reaction vessel, initially at 305 KK, contains carbon monoxide gas at a partial pressure of 232 mmHg and hydrogen gas at a partial pressure of 395 mmHg. Identify the limiting reactant and determine the theoretical yield of methanol in grams. Express your answer with the appropriate units. 2. What is the pressure in a 12.0-LL cylinder filled with 39.5 g of oxygen...

  • Carbon monoxide and hydrogren react at high temperatures to produce methanol. CO (g) + 2 H2...

    Carbon monoxide and hydrogren react at high temperatures to produce methanol. CO (g) + 2 H2 (g) ⇔ CH3OH (g) When 0.892 mol of CO is combined with 0.933 mol of H2 in a 1.00-L vessel at 130ºC, there is 0.185 mol of CH3OH once equilibrium is reached. What is the molar equilibrium concentration of H2 at 130ºC?

  • Methanol is synthesized from carbon monoxide and hydrogen (H2) in a catalytic reactor. CO + 2H2...

    Methanol is synthesized from carbon monoxide and hydrogen (H2) in a catalytic reactor. CO + 2H2 → CH3OH The fresh feed to the process contains 32.0% mol of CO, 64% of H2 and 4% N2. This stream is mixed with a recirculation stream at a ratio of 5 mol recirculation / 1 mol fresh feed to the process. The mixture of these streams forms the feed stream to the reactor, which contains 13.0 mol% of N2. Low conversion is achieved...

  • Methanol (CH3OH) is synthesized industrially by the following reaction. CO(g) + 2H2(g)→ CH3OH(g) a) Use the...

    Methanol (CH3OH) is synthesized industrially by the following reaction. CO(g) + 2H2(g)→ CH3OH(g) a) Use the thermodynamic data given below to calculate ΔG°rxn at 25 °C ΔG°f (kJ/mol) CO(g) -137.15 H2 (g) 0 CH3OH(g) -162.3 b) Calculate the equilibrium constant for this reaction at 25 °C.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT