1) a.(20 pts) Set up the integral corresponding to the volume of the solid bounded above by the sphere x2+y2 + z2 16 and below by the cone z2 -3x2 + 3y2 and x 2 0 and y 20. You may want to graph...
Find the volume of the given solid region bounded below by the cone z = \x² + y2 and bounded above by the sphere x2 + y2 + z2 = 8, using triple integrals. (0,0,18) 5) 1 x? +y? +22=8 2-\x?+y? The volume of the solid is (Type an exact answer, using a as needed.)
1. (13 pts.) Use spherical coordinates to set up the triple integral for the solid that is constructed from a portion of a sphere, x2 +y2 +Z2-1 that lies above the cone φ = π/4 . Do NOT evaluate. 1. (13 pts.) Use spherical coordinates to set up the triple integral for the solid that is constructed from a portion of a sphere, x2 +y2 +Z2-1 that lies above the cone φ = π/4 . Do NOT evaluate.
Consider the triple integral SISE g(x,y,z)d), where E is the solid bounded above by the sphere x2 + y2 + z2 = 18 and below by the cone z? = x2 + y2. a) Set up the triple integral in rectangular coordinates (x,y,z). b) Set up the triple integral in cylindrical coordinates (r, 0,z). c) Set up the triple integral in spherical coordinates (2,0,0).
Use rectangular, cylindrical and spherical coordinates to set up the triple integrals representing the volume of the region bounded below by the xy plane, bounded above by the sphere with radius and centered at the origin the equation of the sphere is x2 + y2 + z2-R2), and outside the cylinder with the equation (x - 1)2 +y2-1 (5 pts each) Find the volume by solving one of the triple integrals from above.( 5 pts) Total of 20 pts) Use...
(a) Let R be the solid in the first octant which is bounded above by the sphere 22 + y2+2 2 and bounded below by the cone z- r2+ y2. Sketch a diagram of intersection of the solid with the rz plane (that is, the plane y 0). / 10. (b) Set up three triple integrals for the volume of the solid in part (a): one each using rectangular, cylindrical and spherical coordinates. (c) Use one of the three integrals...
Evaluate the triple integrals JR V and JSSR zdv, where R is the region bounded above by the sphere x2 +y2+22 : 4, below by the cone 3za_ x2 + y2, and such that y 2 0 Evaluate the triple integrals JR V and JSSR zdv, where R is the region bounded above by the sphere x2 +y2+22 : 4, below by the cone 3za_ x2 + y2, and such that y 2 0
Please do #2 40 1. 16 pts) Evaluate the integral( quadrant enclosed by the cirle x + y2-9 and the lines y - 0 and y (3x-)dA by changing to polar coordinates, where R is the region in the first 3x. Sketch the region. 2. [6 pts) Find the volume below the cone z = 3、x2 + y2 and above the disk r-3 cos θ. your first attempt you might get zero. Think about why and then tweak your integral....
Use spherical coordinates to find the mass m of a solid Q that lies between the spheres x2 + y2 +z" 1 and x2 + y2 + z2-4 given that the density at each point P(x, y, z) is inversely proportional to the distance from P to the origin and 8(o, 3,02 15 pts] (0, 1,0)-2/m3 from P to the origin and Use spherical coordinates to find the mass m of a solid Q that lies between the spheres x2...
plane, and outside the cone z-5V x2 (1 point Find the volume of the solid that lies within the sphere x2 ,2 + z2-25, above the x (1 point) Find the mass of the triangular region with vertices (0,0), (1, 0), and (0, 5), with density function ρ (x,y) = x2 +y. plane, and outside the cone z-5V x2 (1 point Find the volume of the solid that lies within the sphere x2 ,2 + z2-25, above the x (1...
All of 10 questions, please. 1. Find and classify all the critical points of the function. f(x,y) - x2(y - 2) - y2 » 2. Evaluate the integral. 3. Determine the volume of the solid that is inside the cylinder x2 + y2- 16 below z-2x2 + 2y2 and above the xy - plane. 4. Determine the surface area of the portion of 2x + 3y + 6z - 9 that is in the 1st octant. » 5. Evaluate JSxz...