Part A An ac series circuit consists of a voltage source of frequency 60 Hz and...
An ac series circuit consists of a voltage source of frequency 60 Hz and voltage amplitude V, a 358-12 resistor, and a capacitor of capacitance 6.2 uF. What must be the source voltage amplitude V for the average electrical power consumed in the resistor to be 432 W? There is no inductance in the circuit. Express your answer using two significant figures. temp@tes Symbols uado ředo reset keyboard shortcuts help, VE
An ac series circuit consists of a voltage source of frequency f = 60 Hz and voltage amplitude V, a resistor of resistance R = 593 Ω, and a capacitor of capacitance C = 2.8×10−6F. What must the source voltage amplitude V be for the average electrical power consumed in the resistor to be 382 watts? There is no inductance in the circuit.
A series LRC circuit is driven by an ac source with a voltage amplitude of 36.0 V and a frequency of 60.0 Hz. The resistance is 160 Ohm, the inductance is 0.230 H, and the capacitance is 70.0 mu F. a) Determine the impedance of the circuit. b) Determine the current amplitude. c) Determine the voltage amplitude across (i) the resistor, (ii) the inductor and (iii) the capacitor. d) Sketch the phasor diagram (at t = 0) for the circuit,...
A series AC circuit has a power source with frequency f = 60 Hz, peak voltage of epsilon_0 = 5.0 V, resistance R = 0.50 omega, capacitance C = 320 mu F, and inductance L = 0.40 H. what is the period circuit? What is the maximum current through the inductor? What is the largest power reached in resistor? Suppose the power supply reaches maximum voltage at time t_1, how the long after t_1 does the current though the resistor...
In the circuit shown in the figure, the 60-Hz ac source has a rms voltage amplitude of 120 V, the capacitive reactance is 600 2 the inductive reactance is 150 2 and the resistance is 450 12 a) What is the inductance Lof the inductor? (2 pts) b) What is the capacitance C of the capacitor? (2 pts) c) What is the impedance of the circuit? (1 pts) 60 Hz R
A circuit has an ac voltage source and a resistor and capacitor connected in series. There is no inductor. The ac voltage source has voltage amplitude 0.900 kV and angular frequency w = 20.0 rad/s. The voltage amplitude across the capacitor is 0.500 kV. The resistor has resistance R= 0.300 kΩ. Part A What is the voltage amplitude across the resistor? Part B What is the capacitance C of the capacitor? Part C Does the source voltage lag or lead the current? Part D What is the average...
A capacitor is connected across an ac source that has voltage amplitude 59.0 V and frequency 750 Hz Part A What is the phase angle o for the source voltage relative to the current? Express your answer in degrees. 190 AED ? - Submit Request Answer Part B Does the source voltage lag or lead the current? O lag O lead Submit Request Answer Part What is the capacitance of the capacitor if the current amplitude is 5.50 A ?...
We have a series RLC circuit with an AC voltage source: The resistance is 100Ohm, the inductance is 10mH, the capacitance is 10mF. Select all the right answers. At 60Hz What is true? Question 10 options: The current through the inductor is larger than through the resistor The voltage across the inductor is larger than the voltage across the capacitor The voltage is lagging behind the current at the source The voltage and the current are in phase at the...
please answer! Part A Series Resonance: A series circuit consists of a 0.440-H inductor, a 380.00 resistor, a 5.70-4F capacitor, and an ac voltage source of amplitude 250.0 V. Find the rs voltage across the capacitor when the circuit operates at resonance. Express your answer with appropriate units. HA ? 182.8 V Submit Request Answer
A series L-R-C circuit is driven with AC voltage of amplitude Vin and frequency ω. Define Vout to be the amplitude of the voltage across the capacitor. The resistance of the resistor is R, the capacitance of the capacitor is C, and the inductance of the inductor is L.(Figure 1) What is the ratio VoutVin? Express your answer in terms of either R, ω, L, and C or R, XL =ωL, and XC =1ωC. Vin c+ Vout