Suppose you roll two 4 sided dice. Let the probabilities of the first die be represented by random variable X and those of the second die be represented by random variable Y.
Let random variable Z be |X-Y|. The range of Z will be from 0 to 3.
1. Find E(Z).
2. Find P(Z = 1|Z <3).
3. What is the probability that you have to play the game 4 times before you roll Z=3?
4. What is the probability that when you play the game 10 times, you get Z=1 6 times out of the 10 rolls?
Please UPVOTE
Suppose you roll two 4 sided dice. Let the probabilities of the first die be represented...
Suppose you roll two 4 sided dice. Let the probabilities of the first die be represented by random variable X and those of the second die be represented by random variable Y. Let random variable Z be X-Y). The range of Z will be from 0 to 3. 1. (2.5 points) Find E(Z). 2. (2.5 points) Find P(Z = 21Z >1). 3. (2.5 points) What is the probability that you have to play the game 6 times before you roll...
Suppose you roll two 4 sided dice. Let the probabilities of the first die be represented by random variable X and those of the second die be represented by random variable Y. Let random variable Z be (X+Y). The range of Z will be from 2-8. 1.(2.5 points) Find E(Z). 2. (2.5 points) Find P(Z = 71Z > 5). 3.(2.5 points) What is the probability that you have to play the game 4 times before you roll Z=7? 4. (2.5...
Suppose you roll two 4 sided dice. Let the probabilities of the first die be represented by random variable X and those of the second die be represented by random variable Y. Let random variable Z be (X+Y). The range of Z will be from 2-8. 1.(2.5 points) Find E(Z). 2. (2.5 points) Find P(Z = 71Z > 5). 3.(2.5 points) What is the probability that you have to play the game 4 times before you roll Z=7? 4. (2.5...
Suppose you roll two 4 sided dice. Let the probabilities of the first die be represented by random variable X and those of the second die be represented by random variable Y. Let random variable Z be (X-Y). The range of Z will be from -3 to 3. 1. (2.5 points) Find E(Z). 2. (2.5 points) Find P(Z =-1|Z < 1). 3. (2.5 points) What is the probability that you have to play the game 3 times before you roll...
Suppose you roll two 4 sided dice. Let the probabilities of the first die be represented by random variable X and those of the second die be represented by random variable Y. Let random variable Z be (X-Y). The range of Z will be from -3 to 3. 1. (2.5 points) Find E(Z). 2. (2.5 points) Find P(Z =-1|Z < 1). 3. (2.5 points) What is the probability that you have to play the game 3 times before you roll...
dice is unbiased. Throws independent. Step 1. You roll a six-sided die. Let X be the (random) number that you obtain. Step 2. You roll X six-sided dice. Let Y be the total number (sum) that you obtain from these X dice. Find E[Y] rounded to nearest .xx.
Step 1. You roll a six-sided die. Let X be the (random) number that you obtain. Step 2. You roll X six-sided dice. Let Y be the total number (sum) that you obtain from these X dice. Find E[Y], rounded to nearest .XX.
There exists 3-sided dice. Such a die, when you roll it, will show 1, 2, or 3 with equal probability. The experiment is to roll 3 such dice. Random variable T is the total of all 3 dice. t P(T=t) 3 4 5 6 7 8 9
Question 3 3 pts Matching problem [Choose] You roll a fair six-sided die 500 times and observe a 3 on 90 of the 500 rolls. You estimate the probability of rolling a 3 to be 0.18 Choose) You roll a fair six-sided die 10 times and observe a 3 on all 10 rolls. You bet the probability of rolling a 3 on the next rollis close to O since you have already had 10 3's in a row You assign...
The Dice game of "Pig" can be played with the following rules. 1. Roll two six-sided dice. Add the face values together. 2. Choose whether to roll the dice again or pass the dice to your opponent. 3. If you pass, then you get to bank any points earned on your turn. Those points become permanent. If you roll again, then add your result to your previous score, but you run the risk of losing all points earned since your...