Question

Please answer all parts:

Consider a particle in a one-dimensional box, where the potential the potential V(x) = 0 for 0 < x <a and V(x) = 20 outside t

0 0
Add a comment Improve this question Transcribed image text
Answer #1

gwen by Here is a S. 4) - as 29 for 1-D box y (1) = sinna 11) Now first order correction team <7,1) H1 VID) Inom (uft du $(4)for for m=2, M = 3, 4, 5, 6 (ii) There is no team which have non- Coron tom E. - (< 1-1-2 mnom zero final - +K;1641+;>72 Kt;1

Proved?

Add a comment
Know the answer?
Add Answer to:
Please answer all parts: Consider a particle in a one-dimensional box, where the potential the potential...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Particle with a speed bump Consider our old friend the 1D particle in the box, except...

    Particle with a speed bump Consider our old friend the 1D particle in the box, except now with a speed bump in the box so the potential now is given by L and L < x < L 0, Vo 0 x V (x) otherwise (a) Calculate the first order correction to the ground state (n = 1) and first excited state (n = 2) energies (b) Calculate the first order correction to the ground state wave function in terms...

  • 4. (20 points). δ. unction perturbation. Consider a particle in a one-dimensional infinite square well with...

    4. (20 points). δ. unction perturbation. Consider a particle in a one-dimensional infinite square well with boundaries at -a and-a. We introduce the following 6-function perturbation at x=0: a. Compute the first-order corrections to the energies of the particle induced by the ν' perturbation b. Recall that you solved this problem exactly in problem set 4 (Griffiths 2.43). Compare your perturbation theory result to the exact solution.

  • Consider a particle confined in two-dimensional box with infinite walls at x 0, L;y 0, L. the dou...

    quantum mechanics Consider a particle confined in two-dimensional box with infinite walls at x 0, L;y 0, L. the doubly degenerate eigenstates are: Ιψη, p (x,y))-2sinnLx sinpry for 0 < x, y < L elsewhere and their eigenenergies are: n + p, n, p where n, p-1,2, 3,.... Calculate the energy of the first excited state up to the first order in perturbation theory due to the addition of: 2 2 Consider a particle confined in two-dimensional box with infinite...

  • 4. (20 points). 5-function perturbation. Consider a particle in a one-dimensional infinite square well with boundaries...

    4. (20 points). 5-function perturbation. Consider a particle in a one-dimensional infinite square well with boundaries at x--a and x-a. We introduce the following δ-function perturbation at V'(x) 00(z). a. Compute the first-order corrections to the energies of the particle induced by the perturbation b. Recall that you solved this problem exactly in problem set 4 (Griffiths 2.43). Compare your perturbation theory result to the exact solution

  • Find parts a and b. Consider the three-dimensional cubic well V = {(0 if 0<x<a, 0<y<a,...

    Find parts a and b. Consider the three-dimensional cubic well V = {(0 if 0<x<a, 0<y<a, 0<z<a), (infinity otherwise). The stationary states are psi^(0) (x, Y, z) = (2/a)^(3/2)sin(npix/a)sin(npiy/a) sin(npiz/a), where nx, ny , and nz are integers. The corresponding allowed energies are E^0 = (((pi^2)(hbar^2))/2m(a^2))(nx^2+ny^2+nz^2). Now let us introduce perturbation V={(V0 if 0<x<(a/2), 0<y<(a/2)), (0 otherwise) a) Find the first-order correction to the ground state energy. b) Find the first-order correction to the first excited state. 1. Consider the...

  • Instead of assuming that a one-dimensional particle has no energy (v(x)=0), consider the case of a...

    Instead of assuming that a one-dimensional particle has no energy (v(x)=0), consider the case of a one-dimensional particle which has finite, but constant, energy V(x)= V sub zero.. Show that the ID particle in a box wave functions. n(x)= A sin ((pi n x)/a). Also solve the Schrödinger equation for this potential, and determine the energies En Problem 2: Particle in a Box with Non-Zero Energy (2 points) Instead of assuming that a one-dimensional particle has no energy (V(x) =...

  • 4. 3D Infinite Square Well Perturbation (20 pts) Consider the three-dimensional infinite cubic well: otherwise The stationary states are where n, ny, and n, are integers. The corresponding allowed en...

    4. 3D Infinite Square Well Perturbation (20 pts) Consider the three-dimensional infinite cubic well: otherwise The stationary states are where n, ny, and n, are integers. The corresponding allowed energies are Now let us introduce the perturbation otherwise a) Find the first-order correction to the ground state energy b) Find the first-order correction to the first excited state 4. 3D Infinite Square Well Perturbation (20 pts) Consider the three-dimensional infinite cubic well: otherwise The stationary states are where n, ny,...

  • Q1) Consider 2.dimensional infinite "well" with the potential otherwise The stationary states are ny = (a)...

    Q1) Consider 2.dimensional infinite "well" with the potential otherwise The stationary states are ny = (a) sin ( x) sin (y,) The corresponding energies are n) , 123 Note that the ground state, ?11 is nondegenerate with the energy E00)-E1)-' r' Now introduce the perturbation, given by the shaded region in the figure ma AH,-{Vo, if 0<x otherwise y<a/2 (a) What is the energy of the 1.st excited state of the unperturbed system? What is its degree of degeneracy,v? (b)...

  • 1. Imagine a version of the particle in a box where the potential is given by:...

    1. Imagine a version of the particle in a box where the potential is given by: b-1 b-1 oootherwise where b is any real number greater than or equal to 2 a) Assuming that > Vo for all n, use the WKB approximation to find the energies. Give your final answer in terms of b, b, and E b) What happens in either extreme, as b approaches 2 or o°? Does the WKB approximation give the exact answers in these...

  • 1. Consider a charged particle bound in the harmonic oscillator potential V(x) = mw x2. A...

    1. Consider a charged particle bound in the harmonic oscillator potential V(x) = mw x2. A weak electric field is applied to the system such that the potential energy, U(X), now has an extra term: V(x) = -qEx. We write the full Hamiltonian as H = Ho +V(x) where Ho = Px +mw x2 V(x) = –qEx. (a) Write down the unperturbed energies, EO. (b) Find the first-order correction to E . (c) Calculate the second-order correction to E ....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT