feel free to comment for any
further clarification
Q2. Draw the nominal π circuit that is used to represent the medium-length transmission line model with total series impedance Z and total shunt admittance Y. Then derive the equations to express the...
A 200-km, 230-kV, 60-Hz three-phase line has a positive-sequence
series impedance ?=0.08+?0.48 Ω/km and a positive-sequence shunt
admittance ?=?3.33×10−6 S/km. At full load, the line delivers 250
MW at 0.99 pf lagging and at 220 kV. Using the nominal ? circuit,
calculate:
a. The ABCD parameters,
b. The sending-end voltage and current,
c. The percent voltage regulation.
4. A 500 km, 500kV,60 Hz three-phase transmission line has a positive sequence series impedance z =j 0.38.2/km and a shunt admittance y =j 4.0 x 10-6S/km. Line losses are neglected. a. Calculate the line's characteristic impedance Zc, the propagation constant y and the exact ABCD parameters of the line... b. Calculate the surge impedance loading (SIL) in MW and the maximum power that the line can deliver at rated voltage C. At full load the line delivers 1000 M...
A 230-kV, three-phase transmission line has a per phase series impedance of z = 0.05j0.45 2 per km and a per phase shunt admittance ofy = j3.4 x 10-6 siemens per km. The line is 80 km long. Using the nominal r model, determine (a) The transmission line ABCD constants. Find the sending end voltage and current, voltage regulation, the sending end power and the transmission efficiency when the line delivers (b) 200 MVA, 0.8 lagging power factor at 220...
A 345 kV, three phase transmission line is 130 km long. The series impedance is z = 0.036 + j0.3 Ω per phase/km and the shunt admittance is y = j4.22 x 10-6 S per phase/km. The sending end voltage is 345 kV and the sending end current is 400 A at 0.95 power factor lagging. Find the voltage, current and power at the receiving end and the voltage regulation.
[2000] Question 3: A 500-km, 500-kV, 60-Hz, uncompensated three-phase line has a positive sequence series j4.4 x 10-6 S/ impedance z - j0.35 ohm/km and a positive-sequence shunt admittance y km. If at full load, the line delivers 700 MW at unity power factor and at 475 kV, Calculate The nominal voltage level for this line a) the exact ABCD parameters for this line, the sending- end voltagnb transferred, and max theoretical power that can be transferred, and c) d)...
PROBLEM: A 230-kV, 50 Hz, three-phase transmission line is 120 km long. The line has a per phase series impedance of z-0.05 +j0.45 Ω per km, and a per phase shunt admittance of y 3.4x10-6 Siemens per km. The line delivers (at the receiving end) 200 MVA, 0.8 lagging power factor at 220 kV. Now consider two cases: A- Assume that shunt parameters of the transmission line are ignored (i.e. even if this is a medium length transmission line, under...
Problem 2: A 345 kV, 60 Hz, three-phase characteristic parameters of the transmission line are: transmission line is 130 km long. The r= 0.036 ?/km L = 0.8 x 10-3 H/km C = 0.0112 x 10-6 F/km The receiving end load is 270 MVA with 0.8 PF lagging at 325 kV. (k) What is the total series impedance of this transmission line? (5 points) () What is the total shunt admittance of this transmission line? (5 points) (m) Calculate the...
A 230kV three phase transmission line has a per phase series impedance of z=0.05+j0.45ohms per km and a per phase shunt admittance of y= j3.4x10^-6 siemens per km. The line is 80km long. Using the medium line pi model: (a) Determine the transmission line model constants A, B, C, and D (b) Find the sending end (generating) voltage, current and power when the line delivers to a load of 1. 200 MVA with 0.8 lagging power factor at 220 kV...
Given a 3-transmission line with a series impedance z 0.17+ jo.79 2/mile, and a shunt admittance y j2.10*mile The line is 150 mile long, and delivers to the load (receiving-end) 15 MW at 132 kV, at a power factor PF1. Assume medium length line, and calculate the power angle 012 between the sending-end voltage and the receiving-end voltage.
A 132 kV, 55 MVA, 60 Hz, three-phase, power transmission line is 100 km (62. 1 mi) long, and has the following characteristics: r = 0.25 Ω/km x = 0.5 Ω/km y = j*S/km What is the per phase total series impedance and shunt admittance of the line? Should the line be modeled as a short, medium or long line? Calculate the ABCD constants of the line. Calculate the sending end voltage and current if the line is supplying rated...