QUESTIONS 1- A 69-kV, three-phase transmission line is 20 km long. The line has a per...
A 230-kV, three-phase transmission line has a per phase series impedance of z = 0.05j0.45 2 per km and a per phase shunt admittance ofy = j3.4 x 10-6 siemens per km. The line is 80 km long. Using the nominal r model, determine (a) The transmission line ABCD constants. Find the sending end voltage and current, voltage regulation, the sending end power and the transmission efficiency when the line delivers (b) 200 MVA, 0.8 lagging power factor at 220...
PROBLEM: A 230-kV, 50 Hz, three-phase transmission line is 120 km long. The line has a per phase series impedance of z-0.05 +j0.45 Ω per km, and a per phase shunt admittance of y 3.4x10-6 Siemens per km. The line delivers (at the receiving end) 200 MVA, 0.8 lagging power factor at 220 kV. Now consider two cases: A- Assume that shunt parameters of the transmission line are ignored (i.e. even if this is a medium length transmission line, under...
A 230kV three phase transmission line has a per phase series impedance of z=0.05+j0.45ohms per km and a per phase shunt admittance of y= j3.4x10^-6 siemens per km. The line is 80km long. Using the medium line pi model: (a) Determine the transmission line model constants A, B, C, and D (b) Find the sending end (generating) voltage, current and power when the line delivers to a load of 1. 200 MVA with 0.8 lagging power factor at 220 kV...
A 3-phase 60 Hz 50 km transmission line delivers 20 MW of power to a load at 69 kV and a power factor of 0.8 lagging. The line has the following parameters r = 0.1112/km L = 1.11 mH/km C = negligible Determine: The line impedance. (4 Marks) The "receiving end" phase voltage and current (7 Marks) The "sending end" voltage and current (10 Marks) The voltage regulation. (4 Marks)
A 3-phase, 50 Hz, long 300 Km transmission line delivers 60 MVA at 124 kV and 0-8 p.f. lagging. The total resistance 25.3 ohm and total reactance is 66.5 ohm and the admittance due to capacitance is 0.442*10-3 mho. Determine: (i) (ii) (iii) A,B, C and D constants of long T.L Sending end voltage, current and power factor Transmission efficiency, Voltage regulation
A three-phase transmission line is 200 km long. lt has a total series impedance of 25+j110)Ω Per Phase and a total shunt admittance ofj5x 10 Ω. It delivers 180 MW at 275 kV and 0.8 power factor lagging to a load connected at the receiving end. Using the medium π model of the line, determine the voltage, current, real power, reactive power and power factor at the sending end of the line.
A short 3-phase, 33-kV power transmission line delivers a load of 7-MW at a power factor of 0.85 lagging and 33-kV. If the series impedance of the line is 20+j30 Ohms/phase, calculate The ABCD constants (parameters) The sending end voltage The load angle The voltage regulation The transmission efficiency
A 60 km-long three-phase 60-Hz transmission line has per phase line inductance of 1.554 mH/km and per phase line resistance of 10.33 mΩ/km. It supplies a three-phase Y connected 100 MW 0.9 lagging power factor load at 215 kV line-line voltage. Calculate the voltage regulation and efficiency of transmission.
A 132 kV, 55 MVA, 60 Hz, three-phase, power transmission line is 100 km (62. 1 mi) long, and has the following characteristics: r = 0.25 Ω/km x = 0.5 Ω/km y = j*S/km What is the per phase total series impedance and shunt admittance of the line? Should the line be modeled as a short, medium or long line? Calculate the ABCD constants of the line. Calculate the sending end voltage and current if the line is supplying rated...
A 113 km, single-circuit, three-phase line consists of z = 0.546∠67.53° W/km and y=3.212∠90° μS/ km. The line delivers a load of 60 MW at 230 kV with 0.8 power-factor lagging. If the above transmission line in Problem 3 has a length of 350 km and still delivers the same load at the rated voltage (230 kV). a) Find the voltage, current, real and reactive power, and the power factor at the sending end in both per unit and absolute...