A short 3-phase, 33-kV power transmission line delivers a load of 7-MW at a power factor of 0.85 lagging and 33-kV. If the series impedance of the line is 20+j30 Ohms/phase, calculate
The ABCD constants (parameters)
The sending end voltage
The load angle
The voltage regulation
The transmission efficiency
A short 3-phase, 33-kV power transmission line delivers a load of 7-MW at a power factor...
A short 3-phase, 34-kV power transmission line delivers a load of 10-MW at a power factor of 0.9 lagging and 34-kV. If the series impedance of the line is 10+j15 Ohm/phase calculate; 1
A375-kV 60Hz three-phase 500 miles long transmission line with distributed line parameters per mi of r 0.1 Ohm, L-1.365 mH, c 0.00842 uF and g 0 delivers 200 MW to the load at 350 kV at 0.85 power factor lagging. Find the following: 2. 50 pts. a) Characteristic impedance, attenuation constant and phase constant. b) sinhyL c) Transmission parameter A. d) Transmission efficiency if the sending end voltage and current are is 238.81419.07 kV/phase and 306.07228.783 A respectively using long-line...
A 3-phase 60 Hz 50 km transmission line delivers 20 MW of power to a load at 69 kV and a power factor of 0.8 lagging. The line has the following parameters r = 0.1112/km L = 1.11 mH/km C = negligible Determine: The line impedance. (4 Marks) The "receiving end" phase voltage and current (7 Marks) The "sending end" voltage and current (10 Marks) The voltage regulation. (4 Marks)
A 230-kV, three-phase transmission line has a per phase series impedance of z = 0.05j0.45 2 per km and a per phase shunt admittance ofy = j3.4 x 10-6 siemens per km. The line is 80 km long. Using the nominal r model, determine (a) The transmission line ABCD constants. Find the sending end voltage and current, voltage regulation, the sending end power and the transmission efficiency when the line delivers (b) 200 MVA, 0.8 lagging power factor at 220...
QUESTIONS 1- A 69-kV, three-phase transmission line is 20 km long. The line has a per phase series impedance of 0,120 + 10,4325 per km. Detemine the sending end voltage, voltage regulation, the sending end power, and the transmission efficiency when the line delivers (a) 60 MVA, 0.8 lagging power factor at 60 kV. (b) 110 MW, unity power factor at 60 kV
PROBLEM: A 230-kV, 50 Hz, three-phase transmission line is 120 km long. The line has a per phase series impedance of z-0.05 +j0.45 Ω per km, and a per phase shunt admittance of y 3.4x10-6 Siemens per km. The line delivers (at the receiving end) 200 MVA, 0.8 lagging power factor at 220 kV. Now consider two cases: A- Assume that shunt parameters of the transmission line are ignored (i.e. even if this is a medium length transmission line, under...
power system
A single-circuit 60-Hz high voltage power transmission line is 370 km (230 mi) long. The conductors are Rook with flat horizontal configuration and 7.25 ms=(23.8 ft.) conductor spacing. The load on the line is 125 MW at 100% power factor. Use attached Tables A3 to A3to determine; The sending end voltage Vs The sending end current Is The sending end power Ps The percentage voltage regulation The transmission efficiency Given that Ds for the Rook conductor is 0.0327...
A 3-phase 138-kv transmission line is connected to a 49 MW load at .85 lagging power factor. The line constants of the 52-mile long line are Z = 95 L 78 degree ohm and Y=.001 L90 degree S. Using the nominal T Circuit representation, calculate the A, B, C, and D constants of the line Sending-end voltage Sending-end current Sending-end power factor Efficiency of transmission
A 132 kV, 55 MVA, 60 Hz, three-phase, power transmission line is 100 km (62. 1 mi) long, and has the following characteristics: r = 0.25 Ω/km x = 0.5 Ω/km y = j*S/km What is the per phase total series impedance and shunt admittance of the line? Should the line be modeled as a short, medium or long line? Calculate the ABCD constants of the line. Calculate the sending end voltage and current if the line is supplying rated...
Q2. Draw the nominal π circuit that is used to represent the medium-length transmission line model with total series impedance Z and total shunt admittance Y. Then derive the equations to express the ABCD parameters (a) 20% (b)A 200 km, 230 kV, 50 Hz three-phase overhead transmission line has a positive-sequence series impedance z (0.08 + j0.48) Ω/km, and a positive-sequence shunt admittance y-j3.33 x 10T° S/km. At full load, the line delivers 250 MW at 0.99 power factor lagging...